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Order Topology Orthosummability
in Quantum Logics

Wu Junde,1,4 Zhou Su,2 and Cho Minhyung3

Received

By using the Antosik–Mikusinski infinite matrix convergence theorem in quantum log-
ics, we prove a theorem on orthosummability with respect to order topology in quantum
logics.
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1. EFFECT ALGEBRAS AND ORDER TOPOLOGIES

Let L be a set with two special elements 0, 1, ⊥ be a subset of L × L , if
(a, b) ∈ ⊥, write a ⊥ b, and let ⊕ : ⊥ → L be a binary operation. If the following
axioms hold:

(i) Commutative Law: If a, b ∈ L and a⊥b, then b⊥a and a ⊕ b = b ⊕ a.
(ii) Associative Law: If a, b, c ∈ L , a⊥b and (a ⊕ b)⊥c, then b⊥c, a⊥(b ⊕ c)

and (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c).
(iii) Orthocomplementation Law: For each a ∈ L there exists a unique b ∈ L

such that a⊥b and a ⊕ b = 1.
(iv) Zero-Unit Law: If a ∈ L and 1⊥a, then a = 0.

Then the algebraic system (L , ⊥, ⊕, 0, 1) is said to be an effect algebra. This is
important for modelling unsharp quantum logics (Foulis and Bennett, 1994).

Let (L , ⊥, ⊕, 0, 1) be an effect algebra. If a, b ∈ L and a⊥b we say that a
and b are orthogonal. If a ⊕ b = 1 we say that b is the orthocomplement of a, and
we write b = a′. Clearly 1′ = 0, (a′′)′ = a, a⊥0 and a ⊕ 0 = a for all a ∈ L . We
say that a ≤ b if there exists c ∈ L such that a ⊥ c and a ⊕ c = b. We may prove
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that ≤ is a partial ordering on L and satisfies that 0 ≤ a ≤ 1, a ≤ b ⇔ b′ ≤ a′ and
a ≤ b′ ⇔ a ⊥ b for a, b ∈ L .

Let {aα}α∈� be a net of (L , ⊥, ⊕, 0, 1). Then we write aα ↑, when α � β,
aα ≤ aβ . Moreover, if a is the supremum of {aα : α ∈ �}, i.e., a = ∨{aα : α ∈ �},
then we write aα ↑ a.

Similarly, we may write aα ↓ and aα ↓ a.
If {uα}α∈�, {vα}α∈� are two nets of (L , ⊥, ⊕, 0, 1), for u ↑ uα ≤ vα ↓ v

means that uα ≤ vα for all α ∈ � and uα ↑ u and vα ↓ v . We write b ≤ uα ↑ u if
b ≤ uα for all α ∈ � and uα ↑ u.

We say a net {aα}α∈� of (L , ⊥, ⊕, 0, 1) is order convergent to a point a of L
if there exists two nets {uα}α∈� and {vα}α∈� of (L , ⊥, ⊕, 0, 1) such that

a ↑ uα ≤ aα ≤ vα ↓ a.

Let F = {F : F = ∅ or F ⊆ L and for each net {aα}α∈� of F such that if
{aα}α∈� is order convergent to a, then a ∈ F}.

It is easy to prove that the family F of subsets of L defines a topology τ L
0

on (L , ⊥, ⊕, 0, 1) such that F consists of all closed sets of this topology. The
topology τ L

0 is called the order topology of (L , ⊥, ⊕, 0, 1) (Birkhoff, 1948).
If a ≤ b, the element c ∈ L such that c ⊥ a and a ⊕ c = b is unique, and

satisfies the condition c = (a ⊕ b′)′. It will be denoted by c = b � a.
Let F = {ai : 1 ≤ i ≤ n} be a finite subset of L . If a1 ⊥ a2, (a1 ⊕ a2) ⊥ a3, . . .

and (a1 ⊕ a2 · · · ⊕ an−1)⊥an , we say that F is orthogonal and we define ⊕F =
a1 ⊕ a2 · · · ⊕ an = (a1 ⊕ . . . ⊕ an−1) ⊕ an (by the commutative and associative
laws, this sum does not depend on any permutation of elements). Now, if A is an
arbitrary subset of L and F(A) is the family of all finite subsets of A, we say that
A is orthogonal if F is orthogonal for every F ∈ F(A). If A is orthogonal, we
define ⊕A = ∨{⊕F : F ∈ F(A)}, supposed that the supremum exists in (L , ≤),
and it is called the ⊕-sum of A.

If for all a, b ∈ L , a ≤ b or b ≤ a, then (L , ⊥, ⊕, 0, 1) is said to be a totally
ordered effect algebra; if for all a, b ∈ L , satisfies that a < b, there exists c ∈ L
such that a < c < b, then (L , ⊥, ⊕, 0, 1) is said to be connect.

An effect algebra is complete, if for each orthogonal subset A of L , the ⊕-sum
⊕A exists; if for each countable orthogonal subset B of L , the ⊕-sum ⊕B exists,
then we say that the effect algebra is σ -complete.

2. ORDER TOPOLOGY ORTHOSUMMABILITY

As we know, orthosummability is an important topic in quantum logics (Habil,
1994; Schroder, 1999). In recent, Wu Junde, Lu Shijie, and Kim Dohan studied the
⊕-sum and proved a uniform ⊕-sum theorem (Junde et al., 2003). In this paper,
we introduce the order topology orthosummability of orthogonal sets in effect
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algebra (L , ⊥, ⊕, 0, 1) and prove an order topology orthosummability theorem in
(L , ⊥, ⊕, 0, 1).

Let (L , ⊥, ⊕, 0, 1) be a totally ordered effect algebra. We say that the se-
quence {an}n∈N of (L , ⊥, ⊕, 0, 1) is an order topology τ L

0 -Cauchy sequence, if for
each h ∈ L , 0 < h, there exists n0 ∈ N such that when n0 ≤ n, n0 ≤ m, if an ≤ am ,
then am � an < h; if am ≤ an , then an � am < h (Junde et al., 2003).

Definition 1. Let A be an orthogonal subset of (L , ⊥, ⊕, 0, 1) and F(A) be the
family of all finite subsets of A. It is clear that F(A) is a net if we define F1 ≤ F2

iff F1 ⊆ F2. If the net {⊕F : F ∈ F(A)} is order topology τ L
0 convergent to a ∈ L ,

then we say that A is order topology τ L
0 -orthosummable and a is the order topology

τ L
0 -summation of A.

Lemma 1. (Junde et al., 2003). Let (L , ⊥, ⊕, 0, 1) be a σ -complete totally or-
dered connect effect algebra. Then for each h ∈ L , 0 < h, there exists an orthog-
onal ⊕-summable sequence {hi } of L such that ∨n∈N{⊕n

i=1hi } < h.

Furthermore, we can prove the following lemma, it is very important in this
paper:

Lemma 2. Let (L , ⊥, ⊕, 0, 1) be a totally order effect algebra, h = h1 ⊕ h2, g =
g1 ⊕ g2. If max{h, g}� min{h, g} >max{h1, g1}� min{h1, g1}, then max{h2, g2}�
min{h2, g2} > (max{h, g}� min{h, g})� (max{h1, g1}� min {h1, g1}).

3. MAIN THEOREM AND ITS PROOF

Now, by using the methods of (Mazario, 2001) and (Aizpuru and Gutierrez-
Davila, 2003) and the Antosik-Mikusinski theorem in quantum logics (Junde et al.,
2003), we prove the following order topology τ L

0 -orthosummability theorem:

Theorem 1. Let (L , ⊥, ⊕, 0, 1) be a σ -complete totally ordered connect effect
algebra, for each i ∈ N, the orthogonal set {ai,α}α∈� of L be order topology τ L

0
orthosummable, for each finite subset F of �, the sequence {⊕α∈F ai,α}i∈N be order
topology τ L

0 convergent, for each pairwise disjoint finite subset sequence {E j } of
� and each infinite subset D of N, there exist a countable subset B of � and an
infinite subset M of D such that E j ⊆ B if j ∈ M and E j ∩ B = ∅ if j ∈ N\M,
and {⊕α∈Bai,α}i∈N be an order topology τ L

0 -Cauchy sequence. Then the orthogonal
family {ai,α}α∈� of L is order topology τ L

0 uniformly orthosummable with respect
to i ∈ N.

Proof: We only need to prove that the nets {⊕α∈F ai,α}F∈F (�) are order topology
τ L

0 uniformly Cauchy with respect to i ∈ N. If not, pick a h ∈ L such that for
each F0 ∈ F(�) there exist F ′

0, F ′′
0 ∈ F(�) and i0 ∈ N satisfy F0 ⊆ F ′

0 ⊆ F ′′
0 , and
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⊕α∈F ′′
0 \F ′

0
ai0,α ≥ h. This shows that for each F0 ∈ F(�) there exist F1 ∈ F(�\F0)

and i0 ∈ N such that ⊕α∈F1 ai0,α ≥ h. That is,

{⊕α∈F ai0,α : F ∈ F(�\F0)} �⊆ [0, h). (1)

We show that (1) will hold for infinite many numbers i ∈ N. If {⊕α∈F ai,α :
F ∈ F(A\F0)} �⊆ [0, h) only for i1, i2, . . . , ik , note that for each i ∈ N, {ai,α}α∈� is
order topology τ L

0 -orthosummable, so it follows easily that there exist F1, . . . , Fk ∈
F(�) such that

{⊕α∈F ai j ,α : F ∈ F(�\Fj )} ⊆ [0, h), j = 1, . . . , k.

Let H = F0 ∪ F1 ∪ F2 ∪ · · · ∪ Fk . We have

{⊕α∈F ai,α : F ∈ F(�\H )} ⊆ [0, h), i ∈ N.

This contradicts (1) and so the conclusion holds. �

This shows that for each F0 ∈ F(�) and each i0 ∈ N, there exist F ∈ F(�\F0)
and i > i0 such that ⊕α∈F ai,α ≥ h.

Thus, we can obtain a sequence of {Fk}k∈N of pairwise disjoint finite subsets
of � and an increasing sequence {ik}k∈N of positive integers such that

⊕α∈Fk aik ,α ≥ h. (2)

Let bnk = ⊕α∈Fk ain ,α . Then by the hypothesis of Theorem 1 that bnk satisfies
the following conditions:

(i) For each n ∈ N, {bnk} is an orthogonal sequence of L , and {bnk} is ⊕-
summable by the σ -completeness of (L , ⊥, ⊕, 0, 1).

(ii) For each finite subset N0 of N, the sequence {⊕k∈N0 bnk}n∈N is order
topology τ L

0 convergent.
(iii) For each pairwise disjoint finite subsets sequence {B j } of N and each

infinite subset E of N, there exist a infinite subset G of E and an infinite
subset Q of N such that B j ⊆ Q if j ∈ G and B j ∩ Q = ∅ if j ∈ N\G,
and {⊕k∈Qbnk}n∈N is an order topology τ L

0 -Cauchy sequence.
Now, we prove that for each P ⊆ N, the sequence {⊕k∈P bnk}n∈N is

order topology τ L
0 Cauchy.

In fact, if not, we can find a h1 ∈ L such that for each n0 ∈ N,
there exist m, n > n0 such that if ⊕k∈P bmk ≥ ⊕k∈P bnk , then ⊕k∈P bmk �
(⊕k∈P bnk) ≥ h1, if ⊕k∈P bnk ≥ ⊕k∈P bmk , then ⊕k∈P bnk � (⊕k∈P bmk) ≥
h1. It follows from Lemma 1 that there exist three orthogonal elements
h2, h3, h4 such that h2 ⊕ h3 ⊕ h4 < h1, h3 ⊕ h4 < h2.

Let n0 = 1, m1, n1 > n0 and when ⊕k∈P bm1k ≥ ⊕k∈P bn1k , ⊕k∈P

bm1k � (⊕k∈P bn1k) ≥ h1; when ⊕k∈P bn1k ≥ ⊕k∈P bm1k , ⊕k∈P bn1k �
(⊕k∈P bm1k) ≥ h1.
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It follows from (i) that there exists a p1 ∈ N such that for each
H ⊆ {p1 + 1, . . . , },

⊕k∈H bm1k � (⊕k∈H bn1k) ≤ h4,

or

⊕k∈H bn1k � (⊕k∈H bm1k) ≤ h4.

Thus, it follows from Lemma 2 that

⊕k∈P∩{1,2,..., p1}bm1k � (⊕k∈P∩{1,2,..., p1}bn1k) ≥ h2 ⊕ h3,

or

⊕k∈P∩{1,2,..., p1}bn1k � (⊕k∈P∩{1,2,..., p1}bm1k) ≥ h2 ⊕ h3.

Note that (ii), there exists l1 > m1, l1 > n1 such that when m, n >
l1 and C ⊆ {1, 2, . . . , p1},

⊕k∈C bmk � (⊕k∈C bnk) ≤ h3,

or

⊕k∈C bnk � (⊕k∈P bmk) ≤ h3.

Let n0 > l1 and m2, n2 > n0 such that ⊕k∈P bm2k � (⊕k∈P bn2k) ≥
h1 or ⊕k∈P bn2k � (⊕k∈P bm2k) ≥ h1.

It follows from (i) again that we can pick a p2 ∈ N, p2 > p1 such
that for each H ⊆ {p2 + 1, . . . , },

⊕k∈H bm2k � (⊕k∈H bn2k) ≤ h4

or

⊕k∈H bn2k � (⊕k∈H bm2k) ≤ h4.

Thus, it follows from Lemma 2 that

⊕k∈P∩{p1,..., p2}bm2k � (⊕k∈P∩{p1,..., p2}bn2k) ≥ h2,

or

⊕k∈P∩{p1,..., p2}bn2k � (⊕k∈P∩{p1,..., p2}bm2k) ≥ h2.

Inductively, we may obtain three increasing sequences {ni }, {mi },
and {pi } of N such that

(iv) When i > 1 and C ⊆ {1, 2, . . . , pi−1},
⊕k∈C bmi k � (⊕k∈C bni k) ≤ h3,

or

⊕k∈C bni k � (⊕k∈C bmi k) ≤ h3.
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(v) If Ei = P ∩ {pi−1 + 1, . . . , pi } and i > 1, then

⊕k∈Ei bmi k � (⊕k∈Ei bni k) ≥ h2,

or

⊕k∈Ei bni k � (⊕k∈Ei bmi k) ≥ h2.

(vi) For each H ⊆ {pi + 1, . . . , },
⊕k∈H bmi k � (⊕k∈H bni k) ≤ h4,

or

⊕k∈H bni k � (⊕k∈H bmi k) ≤ h4.

Thus, we can find a Q ⊆ N and an infinite subset G of N such that Ei ⊆ Q
if i ∈ G and Ei ∩ Q = ∅ if i ∈ N\G, and {⊕k∈Qbnk}n∈N is an order topology
τ L

0 -Cauchy sequence.
On the other hand, it follows from (iv), (v), and (vi) and Lemma 2 that for

i ∈ G, i > 1, we have
⊕k∈Qbmi k � (⊕k∈Qbni k) ≥ h2 � h3 � h4 or ⊕k∈Qbni k � (⊕k∈Qbmi k) ≥ h2 �

h3 � h4. This contradicts {⊕k∈Qbnk}n∈N is an order topology τ L
0 -Cauchy sequence

and so this conclusion is true.
Thus, the Antosik–Mikusinski theorem (Junde et al., 2003) shows that {bii }

is order topology τ L
0 convergent to 0. This contradicts (2) and so the theorem is

proved.
The following important conclusion can be obtained from Theorem 1

immediately:

Theorem 2. Let (L , ⊥, ⊕, 0, 1) be a complete totally ordered connect effect
algebra, for each i ∈ N, {aiα}α∈� be an orthogonal set of L. If for each subset
� of �, the ⊕-sum sequence {⊕α∈�aiα}i∈N is order topology τ L

0 convergent, then
{aiα}α∈� are uniformly ⊕-summable with respect to i ∈ N.
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