Order Topology Orthosummability in Quantum Logics

Wu Junde,^{1,4} Zhou Su,² and Cho Minhyung³

Received

By using the Antosik–Mikusinski infinite matrix convergence theorem in quantum logics, we prove a theorem on orthosummability with respect to order topology in quantum logics.

KEY WORDS: quantum logics; effect algebras; order topologies; orthosummable.

1. EFFECT ALGEBRAS AND ORDER TOPOLOGIES

Let *L* be a set with two special elements 0, 1, \perp be a subset of $L \times L$, if $(a, b) \in \perp$, write $a \perp b$, and let $\oplus : \perp \rightarrow L$ be a binary operation. If the following axioms hold:

- (i) Commutative Law: If $a, b \in L$ and $a \perp b$, then $b \perp a$ and $a \oplus b = b \oplus a$.
- (ii) Associative Law: If $a, b, c \in L$, $a \perp b$ and $(a \oplus b) \perp c$, then $b \perp c$, $a \perp (b \oplus c)$ and $(a \oplus b) \oplus c = a \oplus (b \oplus c)$.
- (iii) Orthocomplementation Law: For each $a \in L$ there exists a unique $b \in L$ such that $a \perp b$ and $a \oplus b = 1$.
- (iv) Zero-Unit Law: If $a \in L$ and $1 \perp a$, then a = 0.

Then the algebraic system $(L, \perp, \oplus, 0, 1)$ is said to be an *effect algebra*. This is important for modelling unsharp quantum logics (Foulis and Bennett, 1994).

Let $(L, \bot, \oplus, 0, 1)$ be an effect algebra. If $a, b \in L$ and $a \bot b$ we say that a and b are *orthogonal*. If $a \oplus b = 1$ we say that b is the *orthocomplement* of a, and we write b = a'. Clearly 1' = 0, (a'')' = a, $a \bot 0$ and $a \oplus 0 = a$ for all $a \in L$. We say that $a \le b$ if there exists $c \in L$ such that $a \bot c$ and $a \oplus c = b$. We may prove

¹Department of Mathematics, Zhejiang University, Hangzhou, People's Republic of China.

² City College, Zhejiang University, Hangzhou, People's Republic of China.

³ Department of Applied Mathematics, Kumoh National Institute of Technology, Kyungbuk, Korea.

⁴ To whom correspondence should be addressed at Department of Mathematics, Zhejiang University, Hongzhou 310027, People's Republic of China; e-mail: wjd@math.zju.edu.cn.

that \leq is a partial ordering on *L* and satisfies that $0 \leq a \leq 1, a \leq b \Leftrightarrow b' \leq a'$ and $a \leq b' \Leftrightarrow a \perp b$ for $a, b \in L$.

Let $\{a_{\alpha}\}_{\alpha \in \Lambda}$ be a net of $(L, \bot, \oplus, 0, 1)$. Then we write $a_{\alpha} \uparrow$, when $\alpha \leq \beta$, $a_{\alpha} \leq a_{\beta}$. Moreover, if *a* is the supremum of $\{a_{\alpha} : \alpha \in \Lambda\}$, i.e., $a = \lor \{a_{\alpha} : \alpha \in \Lambda\}$, then we write $a_{\alpha} \uparrow a$.

Similarly, we may write $a_{\alpha} \downarrow$ and $a_{\alpha} \downarrow a$.

If $\{u_{\alpha}\}_{\alpha \in \Lambda}$, $\{v_{\alpha}\}_{\alpha \in \Lambda}$ are two nets of $(L, \bot, \oplus, 0, 1)$, for $u \uparrow u_{\alpha} \leq v_{\alpha} \downarrow v$ means that $u_{\alpha} \leq v_{\alpha}$ for all $\alpha \in \Lambda$ and $u_{\alpha} \uparrow u$ and $v_{\alpha} \downarrow v$. We write $b \leq u_{\alpha} \uparrow u$ if $b \leq u_{\alpha}$ for all $\alpha \in \Lambda$ and $u_{\alpha} \uparrow u$.

We say a net $\{a_{\alpha}\}_{\alpha \in \Lambda}$ of $(L, \bot, \oplus, 0, 1)$ is *order convergent* to a point *a* of *L* if there exists two nets $\{u_{\alpha}\}_{\alpha \in \Lambda}$ and $\{v_{\alpha}\}_{\alpha \in \Lambda}$ of $(L, \bot, \oplus, 0, 1)$ such that

$$a \uparrow u_{\alpha} \leq a_{\alpha} \leq v_{\alpha} \downarrow a$$

Let $\mathcal{F} = \{F : F = \emptyset \text{ or } F \subseteq L \text{ and for each net } \{a_{\alpha}\}_{\alpha \in \Lambda} \text{ of } F \text{ such that if } \{a_{\alpha}\}_{\alpha \in \Lambda} \text{ is order convergent to } a, \text{ then } a \in F\}.$

It is easy to prove that the family \mathcal{F} of subsets of L defines a topology τ_0^L on $(L, \bot, \oplus, 0, 1)$ such that \mathcal{F} consists of all closed sets of this topology. The topology τ_0^L is called the *order topology* of $(L, \bot, \oplus, 0, 1)$ (Birkhoff, 1948).

If $a \le b$, the element $c \in L$ such that $c \perp a$ and $a \oplus c = b$ is unique, and satisfies the condition $c = (a \oplus b')'$. It will be denoted by $c = b \ominus a$.

Let $F = \{a_i : 1 \le i \le n\}$ be a finite subset of L. If $a_1 \perp a_2$, $(a_1 \oplus a_2) \perp a_3$, ... and $(a_1 \oplus a_2 \cdots \oplus a_{n-1}) \perp a_n$, we say that F is *orthogonal* and we define $\oplus F = a_1 \oplus a_2 \cdots \oplus a_n = (a_1 \oplus \ldots \oplus a_{n-1}) \oplus a_n$ (by the commutative and associative laws, this sum does not depend on any permutation of elements). Now, if A is an arbitrary subset of L and $\mathcal{F}(A)$ is the family of all finite subsets of A, we say that A is *orthogonal* if F is orthogonal for every $F \in \mathcal{F}(A)$. If A is orthogonal, we define $\oplus A = \bigvee \{\oplus F : F \in \mathcal{F}(A)\}$, supposed that the supremum exists in (L, \leq) , and it is called the \oplus -sum of A.

If for all $a, b \in L, a \leq b$ or $b \leq a$, then $(L, \bot, \oplus, 0, 1)$ is said to be a *totally* ordered effect algebra; if for all $a, b \in L$, satisfies that a < b, there exists $c \in L$ such that a < c < b, then $(L, \bot, \oplus, 0, 1)$ is said to be *connect*.

An effect algebra is *complete*, if for each orthogonal subset A of L, the \oplus -sum $\oplus A$ exists; if for each countable orthogonal subset B of L, the \oplus -sum $\oplus B$ exists, then we say that the effect algebra is σ -complete.

2. ORDER TOPOLOGY ORTHOSUMMABILITY

As we know, orthosummability is an important topic in quantum logics (Habil, 1994; Schroder, 1999). In recent, Wu Junde, Lu Shijie, and Kim Dohan studied the \oplus -sum and proved a uniform \oplus -sum theorem (Junde *et al.*, 2003). In this paper, we introduce the order topology orthosummability of orthogonal sets in effect

Order Topology Orthosummability in Quantum Logics

algebra $(L, \bot, \oplus, 0, 1)$ and prove an order topology orthosummability theorem in $(L, \bot, \oplus, 0, 1)$.

Let $(L, \bot, \oplus, 0, 1)$ be a totally ordered effect algebra. We say that the sequence $\{a_n\}_{n\in\mathbb{N}}$ of $(L, \bot, \oplus, 0, 1)$ is an order topology τ_0^L -*Cauchy sequence*, if for each $h \in L$, 0 < h, there exists $n_0 \in \mathbb{N}$ such that when $n_0 \le n$, $n_0 \le m$, if $a_n \le a_m$, then $a_m \ominus a_n < h$; if $a_m \le a_n$, then $a_n \ominus a_m < h$ (Junde *et al.*, 2003).

Definition 1. Let *A* be an orthogonal subset of $(L, \bot, \oplus, 0, 1)$ and $\mathcal{F}(A)$ be the family of all finite subsets of *A*. It is clear that $\mathcal{F}(A)$ is a net if we define $F_1 \leq F_2$ iff $F_1 \subseteq F_2$. If the net $\{\oplus F : F \in \mathcal{F}(A)\}$ is order topology τ_0^L convergent to $a \in L$, then we say that *A* is order topology τ_0^L -orthosummable and *a* is the order topology τ_0^L -summation of *A*.

Lemma 1. (Junde *et al.*, 2003). Let $(L, \bot, \oplus, 0, 1)$ be a σ -complete totally ordered connect effect algebra. Then for each $h \in L$, 0 < h, there exists an orthogonal \oplus -summable sequence $\{h_i\}$ of L such that $\lor_{n \in \mathbb{N}} \{\bigoplus_{i=1}^n h_i\} < h$.

Furthermore, we can prove the following lemma, it is very important in this paper:

Lemma 2. Let $(L, \bot, \oplus, 0, 1)$ be a totally order effect algebra, $h = h_1 \oplus h_2$, $g = g_1 \oplus g_2$. If $max\{h, g\} \ominus min\{h, g\} > max\{h_1, g_1\} \ominus min\{h_1, g_1\}$, then $max\{h_2, g_2\} \ominus min\{h_2, g_2\} > (max\{h, g\} \ominus min\{h, g\}) \ominus (max\{h_1, g_1\} \ominus min\{h_1, g_1\})$.

3. MAIN THEOREM AND ITS PROOF

Now, by using the methods of (Mazario, 2001) and (Aizpuru and Gutierrez-Davila, 2003) and the Antosik-Mikusinski theorem in quantum logics (Junde *et al.*, 2003), we prove the following order topology τ_0^L -orthosummability theorem:

Theorem 1. Let $(L, \bot, \oplus, 0, 1)$ be a σ -complete totally ordered connect effect algebra, for each $i \in \mathbb{N}$, the orthogonal set $\{a_{i,\alpha}\}_{\alpha \in \Lambda}$ of L be order topology τ_0^L orthosummable, for each finite subset F of Λ , the sequence $\{\bigoplus_{\alpha \in F} a_{i,\alpha}\}_{i \in \mathbb{N}}$ be order topology τ_0^L convergent, for each pairwise disjoint finite subset sequence $\{E_j\}$ of Λ and each infinite subset D of \mathbb{N} , there exist a countable subset B of Λ and an infinite subset M of D such that $E_j \subseteq B$ if $j \in M$ and $E_j \cap B = \emptyset$ if $j \in \mathbb{N} \setminus M$, and $\{\bigoplus_{\alpha \in B} a_{i,\alpha}\}_{i \in \mathbb{N}}$ be an order topology τ_0^L -Cauchy sequence. Then the orthogonal family $\{a_{i,\alpha}\}_{\alpha \in \Lambda}$ of L is order topology τ_0^L uniformly orthosummable with respect to $i \in \mathbb{N}$.

Proof: We only need to prove that the nets $\{\bigoplus_{\alpha \in F} a_{i,\alpha}\}_{F \in \mathcal{F}(\Lambda)}$ are order topology τ_0^L uniformly Cauchy with respect to $i \in \mathbb{N}$. If not, pick a $h \in L$ such that for each $F_0 \in \mathcal{F}(\Lambda)$ there exist $F'_0, F''_0 \in \mathcal{F}(\Lambda)$ and $i_0 \in \mathbb{N}$ satisfy $F_0 \subseteq F'_0 \subseteq F''_0$, and

 $\bigoplus_{\alpha \in F_0' \setminus F_0'} a_{i_0,\alpha} \ge h$. This shows that for each $F_0 \in \mathcal{F}(\Lambda)$ there exist $F_1 \in \mathcal{F}(\Lambda \setminus F_0)$ and $i_0 \in \mathbb{N}$ such that $\bigoplus_{\alpha \in F_1} a_{i_0,\alpha} \ge h$. That is,

$$\{\bigoplus_{\alpha \in F} a_{i_0,\alpha} : F \in \mathcal{F}(\Lambda \setminus F_0)\} \not\subseteq [0,h).$$
(1)

We show that (1) will hold for infinite many numbers $i \in \mathbb{N}$. If $\{\bigoplus_{\alpha \in F} a_{i,\alpha} : F \in \mathcal{F}(A \setminus F_0)\} \not\subseteq [0, h)$ only for i_1, i_2, \ldots, i_k , note that for each $i \in \mathbb{N}, \{a_{i,\alpha}\}_{\alpha \in \Lambda}$ is order topology τ_0^L -orthosummable, so it follows easily that there exist $F_1, \ldots, F_k \in \mathcal{F}(\Lambda)$ such that

$$\{\bigoplus_{\alpha\in F} a_{i_j,\alpha}: F\in \mathcal{F}(\Lambda\setminus F_j)\}\subseteq [0,h), j=1,\ldots,k.$$

Let $H = F_0 \cup F_1 \cup F_2 \cup \cdots \cup F_k$. We have

$$\{\bigoplus_{\alpha\in F} a_{i,\alpha} : F \in \mathcal{F}(\Lambda \setminus H)\} \subseteq [0, h), i \in \mathbb{N}.$$

This contradicts (1) and so the conclusion holds.

This shows that for each $F_0 \in \mathcal{F}(\Lambda)$ and each $i_0 \in \mathbb{N}$, there exist $F \in \mathcal{F}(\Lambda \setminus F_0)$ and $i > i_0$ such that $\bigoplus_{\alpha \in F} a_{i,\alpha} \ge h$.

Thus, we can obtain a sequence of $\{F_k\}_{k \in \mathbb{N}}$ of pairwise disjoint finite subsets of Λ and an increasing sequence $\{i_k\}_{k \in \mathbb{N}}$ of positive integers such that

$$\bigoplus_{\alpha \in F_k} a_{i_k, \alpha} \ge h. \tag{2}$$

Let $b_{nk} = \bigoplus_{\alpha \in F_k} a_{i_n,\alpha}$. Then by the hypothesis of Theorem 1 that b_{nk} satisfies the following conditions:

- (i) For each $n \in \mathbf{N}$, $\{b_{nk}\}$ is an orthogonal sequence of L, and $\{b_{nk}\}$ is \oplus -summable by the σ -completeness of $(L, \bot, \oplus, 0, 1)$.
- (ii) For each finite subset N₀ of N, the sequence $\{\bigoplus_{k \in N_0} b_{nk}\}_{n \in \mathbb{N}}$ is order topology τ_0^L convergent.
- (iii) For each pairwise disjoint finite subsets sequence $\{B_j\}$ of **N** and each infinite subset *E* of **N**, there exist a infinite subset *G* of *E* and an infinite subset *Q* of **N** such that $B_j \subseteq Q$ if $j \in G$ and $B_j \cap Q = \emptyset$ if $j \in \mathbf{N} \setminus G$, and $\{\bigoplus_{k \in Q} b_{nk}\}_{n \in \mathbf{N}}$ is an order topology τ_0^L -Cauchy sequence.

Now, we prove that for each $P \subseteq \mathbf{N}$, the sequence $\{\bigoplus_{k \in P} b_{nk}\}_{n \in \mathbf{N}}$ is order topology τ_0^L Cauchy.

In fact, if not, we can find a $h_1 \in L$ such that for each $n_0 \in \mathbf{N}$, there exist $m, n > n_0$ such that if $\bigoplus_{k \in P} b_{mk} \ge \bigoplus_{k \in P} b_{nk}$, then $\bigoplus_{k \in P} b_{mk} \ominus$ $(\bigoplus_{k \in P} b_{nk}) \ge h_1$, if $\bigoplus_{k \in P} b_{nk} \ge \bigoplus_{k \in P} b_{mk}$, then $\bigoplus_{k \in P} b_{nk} \ominus (\bigoplus_{k \in P} b_{mk}) \ge$ h_1 . It follows from Lemma 1 that there exist three orthogonal elements h_2, h_3, h_4 such that $h_2 \oplus h_3 \oplus h_4 < h_1, h_3 \oplus h_4 < h_2$.

Let $n_0 = 1, m_1, n_1 > n_0$ and when $\bigoplus_{k \in P} b_{m_1k} \ge \bigoplus_{k \in P} b_{n_1k}, \bigoplus_{k \in P} b_{m_1k} \ominus (\bigoplus_{k \in P} b_{n_1k}) \ge h_1$; when $\bigoplus_{k \in P} b_{n_1k} \ge \bigoplus_{k \in P} b_{m_1k}, \bigoplus_{k \in P} b_{n_1k} \ominus (\bigoplus_{k \in P} b_{m_1k}) \ge h_1$.

It follows from (i) that there exists a $p_1 \in \mathbb{N}$ such that for each $H \subseteq \{p_1 + 1, \dots, \},\$

$$\bigoplus_{k\in H} b_{m_1k} \ominus (\bigoplus_{k\in H} b_{n_1k}) \le h_4,$$

or

$$\bigoplus_{k\in H} b_{n_1k} \ominus (\bigoplus_{k\in H} b_{m_1k}) \le h_4.$$

Thus, it follows from Lemma 2 that

$$\bigoplus_{k\in P\cap\{1,2,...,p_1\}} b_{m_1k} \ominus (\bigoplus_{k\in P\cap\{1,2,...,p_1\}} b_{n_1k}) \ge h_2 \oplus h_3,$$

or

$$\bigoplus_{k \in P \cap \{1, 2, \dots, p_1\}} b_{n_1 k} \ominus (\bigoplus_{k \in P \cap \{1, 2, \dots, p_1\}} b_{m_1 k}) \ge h_2 \oplus h_3.$$

Note that (ii), there exists $l_1 > m_1$, $l_1 > n_1$ such that when $m, n > l_1$ and $C \subseteq \{1, 2, \dots, p_1\}$,

$$\bigoplus_{k\in C} b_{mk} \ominus (\bigoplus_{k\in C} b_{nk}) \leq h_3,$$

or

$$\bigoplus_{k\in C} b_{nk} \ominus (\bigoplus_{k\in P} b_{mk}) \le h_3.$$

Let $n_0 > l_1$ and $m_2, n_2 > n_0$ such that $\bigoplus_{k \in P} b_{m_2k} \ominus (\bigoplus_{k \in P} b_{n_2k}) \ge h_1$ or $\bigoplus_{k \in P} b_{n_2k} \ominus (\bigoplus_{k \in P} b_{m_2k}) \ge h_1$.

It follows from (i) again that we can pick a $p_2 \in \mathbf{N}$, $p_2 > p_1$ such that for each $H \subseteq \{p_2 + 1, \dots, \}$,

$$\bigoplus_{k\in H} b_{m_2k} \ominus (\bigoplus_{k\in H} b_{n_2k}) \le h_4$$

or

$$\oplus_{k\in H} b_{n_2k} \ominus (\oplus_{k\in H} b_{m_2k}) \le h_4.$$

Thus, it follows from Lemma 2 that

$$\bigoplus_{k \in P \cap \{p_1, \dots, p_2\}} b_{m_2 k} \ominus (\bigoplus_{k \in P \cap \{p_1, \dots, p_2\}} b_{n_2 k}) \ge h_2,$$

or

$$\bigoplus_{k \in P \cap \{p_1, \dots, p_2\}} b_{n_2 k} \ominus (\bigoplus_{k \in P \cap \{p_1, \dots, p_2\}} b_{m_2 k}) \ge h_2.$$

Inductively, we may obtain three increasing sequences $\{n_i\}$, $\{m_i\}$, and $\{p_i\}$ of N such that

(iv) When
$$i > 1$$
 and $C \subseteq \{1, 2, ..., p_{i-1}\},\$

$$\bigoplus_{k\in C} b_{m_ik} \ominus (\bigoplus_{k\in C} b_{n_ik}) \leq h_3,$$

or

$$\bigoplus_{k\in C} b_{n_ik} \ominus (\bigoplus_{k\in C} b_{m_ik}) \le h_3.$$

(v) If
$$E_i = P \cap \{p_{i-1} + 1, \dots, p_i\}$$
 and $i > 1$, then
 $\bigoplus_{k \in E_i} b_{m_i k} \ominus (\bigoplus_{k \in E_i} b_{n_i k}) \ge h_2$,

or

$$\bigoplus_{k \in E_i} b_{n_i k} \ominus (\bigoplus_{k \in E_i} b_{m_i k}) \ge h_2$$

(vi) For each
$$H \subseteq \{p_i + 1, \ldots, \}$$
,

$$\oplus_{k\in H} b_{m_ik} \ominus (\oplus_{k\in H} b_{n_ik}) \le h_4,$$

or

$$\bigoplus_{k \in H} b_{n_i k} \ominus (\bigoplus_{k \in H} b_{m_i k}) \le h_4$$

Thus, we can find a $Q \subseteq \mathbf{N}$ and an infinite subset G of \mathbf{N} such that $E_i \subseteq Q$ if $i \in G$ and $E_i \cap Q = \emptyset$ if $i \in \mathbf{N} \setminus G$, and $\{\bigoplus_{k \in Q} b_{nk}\}_{n \in \mathbf{N}}$ is an order topology τ_0^L -Cauchy sequence.

On the other hand, it follows from (iv), (v), and (vi) and Lemma 2 that for $i \in G, i > 1$, we have

 $\bigoplus_{k \in Q} b_{m_i k} \ominus (\bigoplus_{k \in Q} b_{n_i k}) \ge h_2 \ominus h_3 \ominus h_4 \text{ or } \bigoplus_{k \in Q} b_{n_i k} \ominus (\bigoplus_{k \in Q} b_{m_i k}) \ge h_2 \ominus h_3 \ominus h_4.$ This contradicts $\{\bigoplus_{k \in Q} b_{nk}\}_{n \in \mathbb{N}}$ is an order topology τ_0^L -Cauchy sequence and so this conclusion is true.

Thus, the Antosik–Mikusinski theorem (Junde *et al.*, 2003) shows that $\{b_{ii}\}$ is order topology τ_0^L convergent to 0. This contradicts (2) and so the theorem is proved.

The following important conclusion can be obtained from Theorem 1 immediately:

Theorem 2. Let $(L, \bot, \oplus, 0, 1)$ be a complete totally ordered connect effect algebra, for each $i \in \mathbb{N}$, $\{a_{i\alpha}\}_{\alpha \in \Lambda}$ be an orthogonal set of L. If for each subset \triangle of Λ , the \oplus -sum sequence $\{\bigoplus_{\alpha \in \triangle} a_{i\alpha}\}_{i \in \mathbb{N}}$ is order topology τ_0^L convergent, then $\{a_{i\alpha}\}_{\alpha \in \Lambda}$ are uniformly \oplus -summable with respect to $i \in \mathbb{N}$.

ACKNOWLEDGMENTS

This Project was supported by Research Fund of Kumoh National Institute of Technology and is supported by Natural Science Fund of Zhejiang Province of China in 2004 (M103057).

REFERENCES

 Aizpuru, A. and Gutierrez-Davila, A. (2003). Unconditionally Cauchy series and uniform convergence on matrices. *Chinese Annals of Mathematics Series B* 25(3), 335–346.
 Birkhoff, G. (1948). *Lattice Theory*, A.M.S. Colloquium, New York.

1442

Order Topology Orthosummability in Quantum Logics

- Foulis, D. J. and Bennett, M. K. (1994). Effect Algebras and unsharp quantum logics. Foundations of Physics 24, 1331–1352.
- Habil, E. D. (1994). Orthosummable orthoalgebras. International Journal of Theoretical Physics 33, 1957–1983.
- Junde, Wu, Shijie, Lu, and Dohan, Kim (2003). Antosik–Mikusinski matrix convergence theorem in quantum logics. *International Journal of Theoretical Physics* **42**, 1905–1911.
- Mazario, F. G. (2001). Convergence theorems for topological group valued measures on effect algebras. Bulletin of the Australian Mathematical Society 64, 213–231.
- Schroder, B. S. W. (1999). On three notions of orthosummability in orthoalgebras. *International Journal of Theoretical Physics* 38, 3305–3313.